How does BioBURN work?

BioBURN is what is known as a thermogenic or a metabolic enhancer. These products work by stimulating the thyroid and enhancing the amount of energy you body burns. What does the thyroid do?

The thyroid makes three hormones that it secretes into the bloodstream. Two of these hormones, called thyroxine (T4) and triiodothyronine (T3), increase your body's metabolic rate. Essentially the body's metabolic rate is how quickly the cells in your body use the energy stored within them. Thyroid hormones make cells use more energy. By controlling how much energy our cells use, thyroid hormones also help to regulate our body temperature. Heat is released when energy is used, increasing our body temperature. Thyroid hormones also play a role in making proteins, the building blocks of the body's cells. They also increase the use of the body's fat and glucose stores.

In order to make T3 and T4 the thyroid gland needs iodine, a substance found in the food we eat. T4 is called this because it contains four atoms of iodine. T3 contains three atoms of iodine. In the cells and tissues of the body most T4 is converted to T3. T3 is the more active hormone, it influences the activity of all the cells and tissues of your body.

The other hormone that the thyroid makes is called calcitonin. This helps to control the levels of calcium and phosphorus in the blood. These minerals are needed, among other things, to keep bones strong and healthy.

How does the thyroid work?

The main job of the thyroid gland is to produce hormones T4 and T3. To do this the thyroid gland has to take a form of iodine from the bloodstream into the thyroid gland itself. This substance then undergoes a number of different chemical reactions which result in the production of T3 and T4.

The activity of the thyroid is controlled by hormones produced by two parts of the brain, the hypothalamus and the pituitary. The hypothalamus receives input from the body about the state of many different bodily functions. When the hypothalamus senses levels of T3 and T4 are low, or that the body's metabolic rate is low, it releases a hormone called thyrotropin-releasing hormone (TRH). TRH travels to the pituitary via the connecting blood vessels. TRH stimulates the pituitary to secrete thyroid-stimulating hormone (TSH).

TSH is released from the pituitary into the bloodstream and travels to the thyroid gland. Here TSH causes cells within the thyroid to make more T3 and T4. T3 and T4 are then released into the bloodstream where they increase metabolic activity in the body's cells. High levels of T3 stop the hypothalamus and pituitary from secreting more of their hormones. In turn this stops the thyroid producing T3 and T4. This system ensures that T3 and T4 should only be made when their levels are too low.

Calcitonin is released by the thyroid gland if the amount of calcium in the bloodstream is high. Calcitonin decreases the amount of calcium and phosphorus in the blood. It does this by slowing the activity of cells found in bone, called osteoclasts. These cells cause calcium to be released as they 'clean' bone. Calcitonin also accelerates the amount of calcium and phosphorus taken up by bone. Calcitonin works with parathyroid hormone to regulate calcium levels.